The Science of Climate Change: Risks and Impacts

Presentation to Connecticut Global Climate Change Summit: Business Risks and Opportunities for Connecticut’s Insurance Industry

Evan Mills, Ph.D.
U.S. Department of Energy
Lawrence Berkeley National Laboratory
University of California
Berkeley, California - USA

October 27, 2005

Acknowledgements

• Eugene Lecomte*
 – 50-year insurance veteran
 – President Emeritus, IBHS
 – Fmr. President & CEO
 • National Committee on Property Insurance
 • Property Insurance Plans Service Office
 – Fmr. President of the Massachusetts Automobile and Workers Compensation Rating Bureaus & The Earthquake Project

• Richard Roth, Jr.*
 – Fmr. California Assistant Insurance Commissioner (’84-’90)
 – Fmr. P&C actuary in California, 20 years
 – Active in NAIC
 – Expert witness on catastrophe issues

• Paul Epstein, MD**
 – Harvard Medical School (Ctr. Hlth. Global Env.)
 – Leader Climate Change Futures study

• Research sponsors
 - U.S. Department of Energy
 - U.S. Environmental Protection Agency
 - U.S. Agency for International Development
 - UNDP • Swiss RE • Ceres

* Ceres White Paper
** Climate Change Futures Study
Why Insurance & Climate Change?

- World’s largest industry: $3+ trillion/year [3rd lg’st country]
- Prime mechanism for risk averaging (financial) & risk management (physical)
- Long-term role in consumer welfare and development (“emerging markets”) -- if available & affordable
- Provides a global “observing” system [loss data]
- Insurance perspectives and tools complement “hard” science
 - Copes better with uncertainty
- The industry is vulnerable to climate change; Also a potential player in solutions

Effected Business Segments

- Most direct lines + Reinsurance [P/C & L/H]
 - Homeowners, commercial multi-peril, business interruption, auto (personal/commercial), inland marine, aviation, crop, offshore energy, equipment breakdown, liability (several forms), life/health
- Surplus lines
- Guaranty Funds
- Residual Markets
- Risk Retention Groups
- ART

and… public-sector insurance programs

Emerging Markets are a major “hotspot”
CATs Play Key Role in Profitability
P&C Combined Ratios: 1982-2004

Excludes effect of small weather-related events

Source: AM Best, Aggregates & Averages

The Greenhouse Effect

Influences: Natural
- Solar activity
- Volcanoes
- Biological

Influences: Human
- Fossil fuels
- Agricultural burning
- Deforestation
- Desertification
- Aircraft contrails

Impacts
- Air & water temperatures
- Ice
- Precipitation
- Soil moisture
- Ocean currents
- Sea level
- Permafrost
- Ecosystems
- Weather
 - Averages
 - Extremes
 - Storm tracks
 - ENSO
 - Monsoons

Feedbacks can compound or dampen the effect
Climate change leads to a range of important impacts

Health Impacts
- Weather-related mortality/heat stress
- Infectious diseases
- Air quality-induced respiratory effects

Agriculture Impacts
- Crop yields and commodity prices
- Irrigation demands
- Pests and weeds

Forest Impacts
- Change in forest composition
- Shift geographic range of forests
- Forest health and productivity

Water Resource Impacts
- Changes in water supply and timing
- Water quality
- Increased competition for water

Coastal Area Impacts
- Erosion of beaches
- Inundation of coastal wetlands
- Costs to defend coastal communities

Ecosystem Impacts
- Shifts in ecological zones
- Loss of habitat and species
- Coral reefs threatened

Beware of stovepipe assessments that miss interactions and correlations [H. Ivan --> Soybean Rust]

The Scientific Consensus

Intergovernmental Panel on Climate Change
WGII Plenary/Geneva 2001

Operated by the UN: WMO and UNEP

In our fourth 5-year cycle of review and synthesis of scientific literature

- 1300 Authors; 1100 Expert Reviewers
- Findings unanimously adopted by 100+ nations
National Academies of Science Declaration

We urge all nations … to take prompt action to reduce the causes of climate change.

Brazil
Canada
China
France
Germany
India
Italy
Japan
Russia
United Kingdom
United States of America

Human Influence

- **Observed climate-change phenomena are consistent** with the predictions of climate science for human-caused GHG-induced warming.

- **No alternative “culprit” identified** so far – no potential cause of climate change other than greenhouse gases – yields this “fingerprint” match.

- **A credible alternate theory would need to explain** both what the alternative cause of the observed changes is and how it could be that GHGs are NOT having the effects that all current scientific understanding says they should have.
We’ll pass the 2xCO₂ Milestone ~2050

Air Temperatures

Source: NOAA (Geophysical Fluid Dynamics Laboratory)

With increased warming, net impacts increasingly negative

2x CO₂

4x CO₂

Fingerprint:
Temperatures higher than in past 1000 years, and increasing at fastest rate over this period

Prime cause of observed warming is human activity (IPCC 2001)

“Warming Commitment” is even greater:
Most of warming temporarily locked in the oceans

• Natural (solar + volcanic) forcing alone does not account for warming in the past 50 years.

• Human influences alone (greenhouse gases and sulfate aerosols) brings the models and observations into pretty good agreement.
Fingerprint: Rise in Number and Change in Mix of Weather/Climate Disasters

Source: Center for Research in the Epidemiology of Disasters (CRED)

Uncertainty: Physical → Financial

“Catastrophe insurers can't simply extrapolate past experience.”

- Warren Buffett (1992)

- Non-climate factors are key
- Trend consistent with observed climate changes
- Without prevention, losses would have been higher; same for changes in terms
- Only large events included: excludes - some property losses - health/life losses - small-scale events
- Variability is increasing
Disasters Not Just a “Coastal” Issue

- Blackouts
- Crop damages
- Drought
- Equipment breakdown
- Eroded air quality
- Eroded water quality
- Hail
- Ice Storms
- Infectious diseases
- Lightning
- Mudslides
- Sea-level rise/Coastal erosion
- Sinkholes
- Subsidence
- Thunderstorms
- Tornados
- Vehicle damages/injuries
- Wildfire
- Winterstorms

Small-scale, Gradual, Diffuse, and Indirect Events Often Overlooked
Health Impacts

• **Human Systems**
 - Heat stress
 - Respiratory disease
 - Pollen
 - Mold
 - Smoke and particulates
 - Food poisoning
 - Infectious diseases
 - Water quality
 - Injury/death from catastrophes and small-scale events
 - Contamination

• **Natural Systems**
 - Crops & livestock
 - Coral reefs
 - Forest health
 - Biodiversity

The European heat wave of Summer 2003.

Event was “six-sigmas” outside of norm. 16°F above average in France and Germany was a 1-in-10,000 event to 1-in-46,000 event.

WHO estimates 150,000 human mortalities each year due to current climate change.

CLIMATE CONNECTIONS: The Example of Wildfire • Severity to increase 2x to 4x

- **Climatic Factor**: Temperature Increase
- **Physical Consequences**: Summer Drought
 - Temperature leads to more rapid forest-pest reproductive cycle
- **Physical Impacts**: Increased Wind; Increased Lighting
 - Weakened trees; Dries fuel
 - Ignition
- **Economic & Insurance Implications**: Extreme Precipitation
 - Increased fuel load and risk of flood and mudslide

Feedback: CO$_2$ emissions back to atmosphere

Alaska: 2005

Timber loss; eroded property values; tourism

Smoke and particulates (ragweed pollen post-event)

Respiratory and Heart Disease

Fingerprints: Wildfire
(accur burned per fire: U.S. 1960-2004)

Fingerprint: Loss of Ice & Snow Cover

1979
- Loss of land ice contributes to sea-level rise
- "Darkens" Earth’s surface [undesirable feedback]
- “Freshens”, cools northern oceans
- Collateral permafrost melt

2003

1979-2003: 44% reduction in thickness
Fingerprint: Worldwide Glacier Retreat

Americas
Europe
Asia
Africa
Australasia

Grinell Glacier, “Glacier” National Park, USA

Fingerprint: Melting Land Ice

Near complete disintegration of Jackobshavn Isbrae, Greenland’s largest outflow glacier

Alley et al., Science (21 October 2005) -- Landsat
The Greening of Greenland

Meltwater “freshens” the oceans, contributing to climate change

Source: Alley et al. Science (21 October 2005)

Florida under 4m Sea-level Rise

+ 4 meters
Fingerprint: Sea Level Rise

Sea level rise over the last century

- Increase: 10-20 cm (4-8 inches) in 20th Century

South Bethany, Delaware – 3 rows of homes to be lost. Source: Heinz Foundation (for FEMA)

Fingerprint: Lightning

Lightning-related claims accelerate with temperature

Examples of Losses:
- Half of wildfires in western US
- >3000/year: structural and vehicle fires
- 30% of power outages
- 80% of petroleum storage accidents
- 346 incidents to 81 nuclear sites: 1990s
- $2B/year: airline operating costs
- 100,000/y: desktop computer losses
- Traffic signal outages
- $1B/year insurance claims (1989)
- State Farm: 300k claims/year, $330M
- Factory Mutual: 3-4% of claims

Source: www.lightningsafety.com
Power Outages

Bulk Power Disturbances:
- 52 million customers (1982-2002)
- Windstorm: 26%
- Thunderstorm/Lightning: 12%
- Ice/Snow: 19%
- Wildfire: 3%
- Temperature Extremes: 0.3%
- Non-weather-related: 36%
- Undefined Weather: 2%

U.S. total ~$80B/year

Current insured portion unknown: most are below ISO/PCS threshold for being “worth” counting.

Power outages were a factor in slowness of draining New Orleans following Katrina. Also important for contingent business interruption.

Dynamics of Risks, Uncertainties, and Losses

Natural Phenomenon

E.g., temperature increase

Variability/Uncertainty

E.g., temperature extremes

Change in Likelihood of Extremes

E.g., return period of heat waves

Impact / Insured Loss

E.g., loss of life; business interruption, etc.
Why Worry?

• Underwriting
 – Compounds existing insurance problems
 • Mold, Respiratory Disease, Corporate Governance/Liability…
 – Shorter return periods; Increasing variability
 – New types of (unanticipated) losses; changing location
 – “Cat-following-Cat” (windstorm and flood)
 – Unexpected correlation (power outage → flood)
 – Increases not necessarily predictable or gradual
 – Profitability/solvency
 – Flying (partly) blind
 • Seriously incomplete, and increasingly proprietary loss data
 – Have to go to Switzerland or Germany to get good public-domain US data!
 • Financial and physical CAT models based on past outcomes have limited forward-looking value

Why Worry? (cont’d)

• Asset Management
 – Financial market conditions
 – Real estate holdings

• Operations Management
 – Ability to function in post-disaster settings

• Market Power
 – Slowed or shrinking market
 • shift from U.S. to Europe/Asia -- where foresight is greater?
 • voluntary - withdrawal
 • involuntary - knock-on effects
 – Reputation risk

• Indirect Effects
 – “Dust-bowl plus Depression” syndrome
 – Escalating energy prices & inflation bad for insurance market
 – Impacts of climate change on insurance customers

The future that will not mirror the past
Response Options

- **Reactive (terms & conditions)**
 - Higher premiums
 - Higher deductibles
 - Lower limits
 - Exclusions
 - Non-renewal
 - Withdraw from markets

- **Proactive (loss prevention)**
 - Building codes & land-use planning
 - Disaster preparedness, recovery, education
 - Improved modeling
 - Reducing the causes of climate change
 - Underwriting
 - Asset Management
 - Operations

Capital Myth: $400 Billion Available to Pay Losses

Surplus not pooled across companies or lines of business. Must also back-up non-disaster related property/casualty claims and non-weather claims (e.g., terrorism). Surplus fluctuates: sometimes significantly - partly weather-sensitive

Source: Insurance Information Institute estimates based on A.M. Best Q.A.R Data. (Robert Hartwig, III)
Problems → Opportunities

The insurance sector has a key role to play in helping to mitigate the effects of climate change by providing financial indemnification, compensation and relief against climate change events and by developing new products and solutions that can support emerging GHG [greenhouse gas] and renewable energy markets.

Marsh & McLennan Companies

Regulatory Considerations

It has become evident that climate change will continue to challenge insurers and state insurance regulators. Inevitably, this will pose a threat to the availability of essential insurance coverage for consumers.

NAIC (2005)

• Consumers
 – Availability
 – Affordability
 – Solvency

• Insurers
 – Data, models…
 – Disclosure
 – Overseas risk
 – Barriers to innovation
Regulators Can Play a Decisive Role

Reinsurers who provide a backstop on large losses are engaged on the climate issue, but much more work needs to be done by the primary insurers who consumers rely on when catastrophes hit.

Joe Ario, Oregon Insurance Administrator
Vice President, National Association of Insurance Commissioners (2005)

After New Orleans, it's becoming clearer that we are experiencing more frequent and more powerful weather events that pose huge challenges for the insurance industry. … This is both a coastal issue and a heartland issue.

Tim Wagner, Director Nebraska Department of Insurance (2005)

"Everybody talks about the weather, but nobody does anything about it."

-- Charles Dudley Warner
Hartford Courant (1897)

More Information
http://eetd.lbl.gov/insurance

Evan Mills, Ph.D.
MS 90-4000
Lawrence Berkeley National Laboratory
Berkeley, CA 94720 USA
510-486-6784
EMills@lbl.gov
Source Material

- Primary Sources: *Science* magazine, *Nature* magazine, Munich Re, Swiss Re, Insurance Information Institute; PCS/ISO
- United Nations / World Meteorological Organization -- Intergovernmental Panel on Climate Change
- John P. Holdren. Presentation to 2003 UN Investors Summit entitled “Risks from Global Climate Change: What Do We Know? What Should We Do?”
- Paul Epstein, M.D., M.P.H., Harvard Medical School, Center for Health and the Global Environment, presentation entitled “Climate Change Futures” Study (Swiss Re and UNDP)

Supplementary Materials