Making the Business Case for Building Commissioning

Evan Mills, Ph.D.
Lawrence Berkeley National Laboratory
MS 90-4000, Berkeley, CA 94720 USA

emills@lbl.gov | http://cx.lbl.gov

ACG 6th Annual Conference on Total Building Commissioning, Las Vegas

April 15, 2010
Google News Items

“Energy”

“Energy Efficiency”
What if there were a way to save the nation $30 billion a year in energy costs, reduce greenhouse gas emissions by more than 300 million tons a year and create thousands of new jobs - using existing technologies and at a price so cheap that it would pay for itself in the first year?

Evan Mills, a researcher at the Lawrence Berkeley National Laboratory, says there already is one: building commissioning, the art and science of maximizing the energy efficiency of commercial buildings.
What the user asked for ...

What the feasibility study said.

After value engineering ...

What the plans specified ...

As built ...

What the client really wanted.
Hall of Shame

Hot water valve motion impeded by piping layout [EMC no date (a)]

Exhaust fan hardwired in an “always on” position [Mittal and Hammond 2008]

Zone damper actuator arm broken (no temperature control) [Martha Hewett, MNCEE]

Rust indicates poor anti-condensation heating control setpoints in supermarket refrigeration cabinet [Sellers and Zazzara 2004]

Inadequate fan cooling and excessive fan power due to poor fit between the light fixture and ducting, causing significant duct leakage [Martha Hewett, MNCEE]
Hall of Shame

Damage to brick façade of pool building due to lack of proper sealing and air management [Martha Hewet, Minnesota Center for Energy and Environment (MNCEE)]

Building envelope moisture entry [Aldous 2008]

Air leakage in an underfloor air-distribution system [Stum 2008]

Photosensor (for daylight harvesting) shaded by duct [Deringer 2008]

Photosensor “sees” the electric lamps rather than task-plane illumination [Deringer 2008]

Failed window film applications
Commissioning as risk management

- Commissioning is more than “just another pretty energy-saving measure.”
- It is a risk-management strategy that should be integral to any systematic approach to garnering energy savings or emissions reductions.
  - Ensures that building owners get what they pay for when constructing or retrofitting buildings
  - Provides insurance for policymakers and program managers that their initiatives actually meet targets
  - Detects and corrects problems that would eventually surface as far more costly maintenance or safety issues.
Making the Business Case

• Gather data on actual commissioning projects in new and existing buildings

• Remove uncertainties regarding the savings and cost-effectiveness of commissioning new and existing commercial buildings

• Document patterns of energy and non-energy issues identified and addressed in the commissioning process

• Perform a standardized analysis of energy savings, carbon reductions, and cost-effectiveness

• Estimate the national (U.S.) savings potential and required job creation
LBNL National Study

- 643 buildings
  - 562 existing
  - 82 new
- 19 building types
- 99 million square feet
- $43 million investment
- 26 states
- 37 Cx providers
## Caveats & conservatisms

<table>
<thead>
<tr>
<th>Underestimation of benefits</th>
<th>Overestimation of benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Limited scope/ambition</td>
<td>• Persistence</td>
</tr>
<tr>
<td>• Costs for non-energy measures</td>
<td>• Recommended measures not implemented</td>
</tr>
<tr>
<td>• Non-energy impacts</td>
<td>• Undocumented retrofit</td>
</tr>
<tr>
<td>• Measures implemented after data collected</td>
<td></td>
</tr>
<tr>
<td>• Delayed benefits (e.g. via training)</td>
<td></td>
</tr>
</tbody>
</table>
Performance benchmarks
Projects are highly cost-effective

**Payback Time (years)**

- **Existing Buildings** (N=300)
- **New Construction** (N=36)

- Median: Lower 25%-ile
- Upper 25%-ile

**Benefit-Cost Ratio**

- **Existing Buildings** (N=317)
- **New Construction** (N=37)
Projects are highly cost-effective
Wide diversity of reported reasons to embark on commissioning projects
Significant observed non-energy benefits
Deficiencies discovered …

% of sites with deficiency

- HVAC
- Cooling plant
- Heating plant
- Thermal distribution
- Terminal units
- Lighting
- Envelope
- Plug loads
- EMS
- Other
- Unknown

Existing Buildings
New Buildings
...and the measures to correct them

**Design, installation, repair, replacement**
- Design change
- Installation modification
- Repair/replacement
- Other

**Operations & Control**
- Advanced reset
- Start/stop
- Scheduling
- Setpoint
- Equipment staging
- Sequence of operations
- Loop tuning
- Manual changes to operation
- Other

**Maintenance**
- Calibration
- Mechanical fix
- Heat transfer maintenance
- Filtration maintenance
- Other
Commissioning costs: new & existing buildings

- New Construction, N=74 projects (Median=$1.16/ft²)
- Existing Buildings, N=332 projects (Median=$0.30/ft²)
First-cost savings offset project costs

33 Projects
First-cost savings offset half of the commissioning cost

“Net Cost” includes first-cost savings where applicable.
Payback times: existing buildings

Existing Buildings Commissioning:
Costs, Savings, and Payback Times

N=300

Payback time = 1 month
Payback time = 6 months
Payback time = 1 year
Payback time = 5 years

Whole-Building Energy Savings ($2009/year)
Commissioning Costs ($2009)
Payback times: new construction

New Buildings Commissioning: Costs, Savings, and Payback Times

- Payback time = 1 year
- Payback time = 5 years
- Payback time = 10 years

N=36
No correlation between payback time and building size
Depth of commissioning versus savings achieved (existing buildings)
High-Tech buildings attain greatest savings and lowest payback times.
High-Tech Case Study: LBNL Advanced Light Source

- Floor area: 118,573 square feet
- Project cost: $32,000
- System commissioned: Chillers
- Energy savings: 46%
- Payback time (commissioning cost/annual energy savings) less than one year
- Avoided capital cost thanks to chiller replacement downsizing from 450 to 350 Tons: $120,000 (based on $1,200/tonne), i.e., four-times the cost of the commissioning project
Two Tales of One Building

Molecular Foundry:
Payback Time by Measure

New-Construction Commissioning

Existing-Building Retro-Commissioning

Average: 0.4 years

Average: 0.2 years
Savings Persistence

(Consumption as % of base year)

Energy use before Commissioning

Increased Energy Use

Energy Savings

Total
Electricity
Central chilled water
Central hot water

Post-commissioning year

N = 36 projects
Trust but Verify

- Business-as-usual (no savings; rising load)
- Savings from conventional RCx with periodic Re-commissioning
- 1) Added MBCx savings from persistence
- 2) Added MBCx savings from new measures identified by metering and trending during initial Cx effort
- 3) Added MBCx savings from continually identified new measures
The US potential is huge: $30 billion/yr. by 2030 ... but Cx rarely treated well in savings potential studies

U.S. MID-RANGE ABATEMENT CURVE – 2030

Source: McKinsey analysis
Market Potential

- The fledgling existing-buildings commissioning industry has reached a size of about $200 million per year in the United States.

- Based on a goal of commissioning each building every five years, the potential size is about $4 billion per year, or 20-times the current number.

- To achieve the goal of keeping the U.S. building stock commissioned would require an increase in the workforce from about 1,500 to 25,000 full-time-equivalent workers, a realistic number when viewed in the context of the existing workforce of related trades.

- But “potentials studies” do a lousy job of considering commissioning
Key Findings (1 of 3)

• Commissioning is arguably the most cost-effective strategy for reducing energy, costs, and greenhouse-gas emissions in buildings today.

★★ Median commissioning costs: $0.30/ft² and $1.16/ft² for existing buildings and new construction, respectively (and 0.4% of total construction costs for new buildings).

★★ Median whole-building energy savings: 16% and 13%.

★★ Median payback times: 1.1 and 4.2 years.

★★ Median benefit-cost ratios: 4.5 and 1.1, cash-on-cash returns of 91% and 23%.

• Energy savings tend to persist well over at least a 3- to 5-year timeframe. Data over longer time horizons are not available.
Key Findings (2 of 3)

- High-tech buildings are particularly cost-effective, and saved large amounts of energy due to their energy-intensiveness.

- Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings, and five-times the savings of projects with a constrained approach.

- Non-energy benefits are extensive and often offset part or all of the commissioning cost.

- Large reductions in greenhouse-gas emissions are achieved, at a negative cost of -$110 and -$25/tonne CO2-equivalent.
Key Findings (3 of 3)

• There is an annual energy-savings potential of $30 billion by the year 2030, and 360 MT CO$_2$-eq emissions reductions.

• The corresponding future industry would have a sales volume of $4 billion per year.

• Approximately 24,000 jobs need to be created in order to deliver the potential. This is “small” in the context of the number of people currently employed in related trades.
“Commissioning America” in a decade is an ambitious goal, but do-able and completely consistent with this country’s aspirations to simultaneously address energy and environmental issues while creating jobs and stimulating economic activity.
Thank You

emills@lbl.gov • http://cx.lbl.gov